An Arbitrary High Order Well-Balanced ADER-DG Numerical Scheme for the Multilayer Shallow-Water Model with Variable Density

نویسندگان

چکیده

Abstract In this work, we present a novel numerical discretization of variable pressure multilayer shallow water model. The model can be written as hyperbolic PDE system and allows the simulation density driven gravity currents in framework. proposed consists an unlimited arbitrary high order accurate (ADER) Discontinuous Galerkin (DG) method, which is then limited with MOOD paradigm using posteriori subcell finite volume limiter. resulting scheme space time for smooth solutions does not destroy natural resolution inherent DG methods presence strong gradients or discontinuities. A strategy to preserve non-trivial stationary also discussed. final method very regions even coarse meshes, shown simulations presented here. Finally, comparison laboratory test, where empirical data are available, performed.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical simulation of transient natural gas flow in pipelines using high order DG-ADER scheme

To increase the numerical accuracy in solving engineering problems, either conventional methods on a fine grid or methods with a high order of accuracy on a coarse grid can be used. In the present research, the second approach is utilized and the arbitrary high order Discontinues Galerkin Arbitrary DERivative (DG-ADER) method is applied to analyze the transient isothermal flow of natural gas th...

متن کامل

An explicit asymptotic preserving low Froude scheme for the multilayer shallow water model with density stratification

We present an explicit scheme for a two-dimensional multilayer shallow water model with density stratification, for general meshes and collocated variables. The proposed strategy is based on a regularized model where the transport velocity in the advective fluxes is shifted proportionally to the pressure potential gradient. Using a similar strategy for the potential forces, we show the stabilit...

متن کامل

Well-balanced bicharacteristic-based scheme for multilayer shallow water flows including wet/dry fronts

The aim of this paper is to present a new well-balanced finite volume scheme for two-dimensional multilayer shallow water flows including wet/dry fronts. The ideas, presented here for the two-layer model, can be generalized to a multilayer case in a straightforward way. The method developed here is constructed in the framework of the Finite Volume Evolution Galerkin (FVEG) schemes. The FVEG met...

متن کامل

High-order well-balanced finite volume WENO schemes for shallow water equation with moving water

A characteristic feature of hyperbolic systems of balance laws is the existence of non-trivial equilibrium solutions, where the effects of convective fluxes and source terms cancel each other. Recently a number of so-called well-balanced schemes were developed which satisfy a discrete analogue of this balance and are therefore able to maintain an equilibrium state. In most cases, applications t...

متن کامل

A Subsonic-Well-Balanced Reconstruction Scheme for Shallow Water Flows

We consider the Saint-Venant system for shallow water flows with non-flat bottom. In the past years, efficient well-balanced methods have been proposed in order to well resolve solutions close to steady states at rest. Here we describe a strategy based on a local subsonic steady-state reconstruction that allows to derive a subsonic-well-balanced scheme, preserving exactly all the subsonic stead...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Scientific Computing

سال: 2021

ISSN: ['1573-7691', '0885-7474']

DOI: https://doi.org/10.1007/s10915-021-01734-2